Capacitors Questions – OCR A Level Physics

Praneel Physics Praincel Philips

Praineel Physics

Philips

Phis

Praineel. Philipsics 1. Define the term capacitance. (P)

Capacitance is the charge stored per unit potential difference, $C=\frac{Q}{V}$. Praincel Philip 2. State the unit of capacitance. (P)

Working and Answer:

Farad (F).

3. What is meant by a dielectric in a capacitor? (P)

Working and Answer:

An insulating material placed between the plates of a capacitor to increase its capacitance.

raineel Pinysics

4. Give one use of capacitors in electrical circuits. (P)

Theel Physics

Working and Answer:

Capacitors are used for smoothing voltage in power supplies.

5. Explain how the energy is stored in a capacitor. (\mathbf{PP})

Working and Answer:

Energy is stored in the electric field between the plates as work is done to move charge against the potential difference.

6. Describe how the capacitance of a parallel plate capacitor depends on its geometry and dielectric. (PP) caineel R

raineel.

raineel Philipsics

RIMSICS

raineel Philis

Working and Answer:

$$C = \varepsilon \frac{A}{d}$$

Capacitance increases with plate area A, dielectric permittivity ε , and decreases with plate separation d.

raineel. Rinds

7. Sketch and describe the voltage-time graph for a discharging capacitor. (PP) P. P. Allie. vppro-Exponential decay; voltage decreases rapidly at first then gradually approaches Prancol Physics

Prancol Physics aneel Physics P. F. STILLE Praineel Philipsics 5 Physics Physics Physic

Praincel Philis 8. What is the time constant for a capacitor-resistor circuit and what does it represent? (PP) stor cir P. t. aineel. Pi

aneel Philipsics

Praincel Philips

$$\tau = RC$$

 $\tau = RC$ It represents the time taken for the charge or voltage to fall to $1/e \approx 37\%$ of its initial value.

Praineel. Philipsipes

R. r. atheel.

Physics

Praineel Philis

Phis

9. A capacitor of $220 \,\mu\text{F}$ is charged to $12 \,\text{V}$. Calculate the energy stored. (PPP)

Working and Answer:

$$E = \frac{1}{2}CV^2 = 0.5 \times 220 \times 10^{-6} \times 12^2 = 0.0158 \,\text{J}$$

10. Calculate the time constant of a circuit with a $1000\,\Omega$ resistor and a $470\,\mu\mathrm{F}$ capacitor. (PPP)

Working and Answer:

$$\tau = RC = 1000 \times 470 \times 10^{-6} = 0.47 \,\mathrm{s}$$

Praineel Philis 11. A capacitor discharges from 6.0 V to 2.2 V in 4.0 s. Estimate the time constant. (PPP) CON

and Answer:
$$V=V_0e^{-t/RC}\Rightarrow \frac{2.2}{6.0}=e^{-4/\tau}\Rightarrow \tau\approx 3.1\,\mathrm{s}$$
 or stores $0.20\,\mathrm{C}$ of charge at $10\,\mathrm{V}$. Find its capacitance. **(PPP)**

 $\frac{12. \text{ A capacitor stores } 0.20 \, \text{C of charge at } 10 \, \text{V. Find its capacitance. } (\text{PPP})}{2.2}$ Praine el Printigio

Praineel Philipsics alleel Physics raineel. Philipsies Working and Answer:

$$C = \frac{Q}{V} = \frac{0.20}{10} = 0.02 \,\mathrm{F}$$

Phis

13. Derive the expression for energy stored in a capacitor. (PPPP) Praineel Philipsics Riane

Working and Answer: Work done to move charge dq is Vdq, but $V = \frac{q}{C}$:

R. F. Allie C. P. In J. Silver

er: charge
$$dq$$
 is Vdq , but $V=\frac{a}{C}$:
$$E=\int_0^Q\frac{q}{C}dq=\frac{1}{2}\frac{Q^2}{C}$$

$$E=\frac{1}{2}CV^2=\frac{1}{2}QV$$

$$E = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

P. P. C.S.

P. ratheel.

14. A capacitor of $10 \,\mu\text{F}$ is discharged through a $100 \,\mathrm{k}\Omega$ resistor. How long will it take for the voltage to drop to 10% of its original value? (PPPP)

Working and Answer:

$$\frac{V}{V_0} = e^{-t/RC} \Rightarrow \ln(0.1) = -t/1 \Rightarrow t = 2.3 \times \tau = 2.3 \text{ s}$$

15. Explain how energy is dissipated in a resistor during capacitor discharge. (PPPP)

Working and Answer:

As current flows through the resistor, electrical energy stored in the capacitor is converted to thermal energy due to resistance.

16. Describe how the presence of a dielectric affects the energy stored in a capacitor. (PPPP)

Working and Answer:

The dielectric increases capacitance, so for the same voltage more charge and energy can be stored.

17. Three capacitors of $4\,\mu\text{F}$, $6\,\mu\text{F}$, and $12\,\mu\text{F}$ are connected in series. Calculate the total capacitance. (PPPPP)

Working and Answer:

$$\frac{1}{C} = \frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{1}{2} \Rightarrow C = 2 \,\mu\text{F}$$

18. Two $10\,\mu\text{F}$ capacitors are connected in parallel and charged to 9.0 V. Find the total energy stored. (PPPP)

Working and Answer:

$$C_{total} = 20 \,\mu\text{F}, \quad E = \frac{1}{2}CV^2 = 0.5 \times 20 \times 10^{-6} \times 81 = 8.1 \times 10^{-4} \,\text{J}$$

19. Calculate the charge remaining after 5 s in a capacitor discharging through a resistor if $Q_0=2.0\,\mathrm{C}$ and $\tau=3\,\mathrm{s}$. (PPPP)

Working and Answer:

$$Q = Q_0 e^{-t/\tau} = 2.0 \times e^{-5/3} \approx 2.0 \times 0.188 = 0.376 \,\mathrm{C}$$

raineel Pinis **20.** A $22\,\mu\mathrm{F}$ capacitor is charged to $15\,\mathrm{V}$ then discharged through a resistor. How much raineel Ri energy is lost to heat during discharge? (PPPP) raineel P

Praineel Philipsics

$$E = \frac{1}{2}CV^2 = 0.5 \times 22 \times 10^{-6} \times 225 = 2.475 \times 10^{-3} \,\mathrm{J}$$

Praincel Philips

Praineel Pinysires

Physics

Praincel Philip

P. P. Sille Col. P. May S.

atheel. Pinysics

Praine et l'année i cé

Working and Answer:
$$\frac{Q}{Q_0} = e^{-6/\tau} = 0.2 \Rightarrow \tau = \frac{6}{\ln(5)} \approx 3.73 \, \text{s}$$

P. F. O. S.

P. ratheel. Philipsics